Review of Suggested Medication for Bronchiectasis Symbicort 160/45

Abstract

Bronchiectasis refers to abnormal dilatation of the bronchi. Airway dilatation can lead to failure of mucus clearance and increased risk of infection. Pathophysiological mechanisms of bronchiectasis include persistent bacterial infections, dysregulated immune responses, impaired mucociliary clearance and airway obstruction. These mechanisms tin interact and cocky-perpetuate, leading over time to dumb lung part. Patients commonly nowadays with productive cough and recurrent breast infections, and the diagnosis of bronchiectasis is based on clinical symptoms and radiological findings. Bronchiectasis can exist the event of several dissimilar underlying disorders, and identifying the aetiology is crucial to guide management. Treatment is directed at reducing the frequency of exacerbations, improving quality of life and preventing illness progression. Although no therapy is licensed for bronchiectasis by regulatory agencies, evidence supports the effectiveness of airway clearance techniques, antibiotics and mucolytic agents, such equally inhaled isotonic or hypertonic saline, in some patients. Bronchiectasis is a disabling affliction with an increasing prevalence and can touch on individuals of whatever age. A major challenge is the application of emerging phenotyping and endotyping techniques to identify the patient populations who would almost benefit from a specific handling, with the goal of meliorate targeting existing and emerging treatments and achieving amend outcomes.

References

  1. Chalmers, J. D., Aliberti, South. & Blasi, F. Management of bronchiectasis in adults. Eur. Respir. J. 45, 1446–1462 (2015).

    PubMed  Google Scholar

  2. Cole, P. J. Inflammation: a two-edged sword — the model of bronchiectasis. Eur. J. Respir. Dis. Suppl. 147, 6–15 (1986).

    CAS  PubMed  Google Scholar

  3. Chalmers, J. D. et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 189, 576–585 (2014). This study described the chance factors for mortality and hospital admissions in multiple European bronchiectasis cohorts and derived a clinical prediction tool that can predict poor issue beyond multiple domains, which has now been validated worldwide.

    PubMed  Google Scholar

  4. Tomos, I., Karakatsani, A., Manali, E. D. & Papiris, Due south. A. Celebrating 2 centuries since the invention of the stethoscope. Rene Theophile Hyacinthe Laënnec (1781–1826). Ann. Am. Thorac Soc. xiii, 1667–1670 (2016).

    PubMed  Google Scholar

  5. Goeminne, P. C. & De Soyza, A. Bronchiectasis: how to be an orphan with many parents? Eur. Respir. J. 47, 10–thirteen (2016).

    PubMed  Google Scholar

  6. Quint, J. K. et al. Changes in the incidence, prevalence and mortality of bronchiectasis in the United kingdom of great britain and northern ireland from 2004 to 2013: a population-based cohort study. Eur. Respir. J. 47, 186–193 (2016). An epidemiological study using routinely collected data, demonstrating dramatic increases in bronchiectasis prevalence over 10 years.

    PubMed  Google Scholar

  7. Ringshausen, F. C. et al. Bronchiectasis in Germany: a population-based estimation of disease prevalence. Eur. Respir. J. 46, 1805–1807 (2015).

    CAS  PubMed  Google Scholar

  8. Aliberti, S. et al. Research priorities in bronchiectasis: a consensus statement from the EMBARC Clinical Research Collaboration. Eur. Respir. J. 48, 632–647 (2016).

    PubMed  Google Scholar

  9. McDonnell, M. J. et al. Multidimensional severity assessment in bronchiectasis: an assay of seven European cohorts. Thorax 71, 1110–1118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar

  10. Chalmers, J. D. et al. The EMBARC European Bronchiectasis Registry: protocol for an international observational study. ERJ Open up Res. https://doi.org/10.1183/23120541.00081-2015 (2016).

    PubMed  PubMed Central  Google Scholar

  11. Aksamit, T. R. et al. Adult patients with bronchiectasis: a first look at the U.s.a. Bronchiectasis Research Registry. Chest 151, 982–992 (2017). The outset report from a national registry in the United States demonstrating patient characteristics very unlike from European and Australasian cohorts, including very high rates of NTM infection.

    Google Scholar

  12. Taylor-Cousar, J. 50. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023 (2017).

    CAS  Google Scholar

  13. Hess, Eastward. P. et al. Trends in computed tomography utilization rates: a longitudinal exercise-based report. J. Patient Saf. 10, 52–58 (2014).

    Google Scholar

  14. Blackall, Southward. R. et al. Bronchiectasis in indigenous and non-indigenous residents of Australia and New Zealand. Respirology 23, 743–749 (2018).

    Google Scholar

  15. Lonni, S. et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann. Am. Thorac Soc. 12, 1764–1770 (2015).

    PubMed  PubMed Central  Google Scholar

  16. Seitz, A. E., Olivier, Grand. N., Adjemian, J., Kingdom of the netherlands, Southward. One thousand. & Prevots, D. R. Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007. Chest 142, 432–439 (2012).

    PubMed  PubMed Cardinal  Google Scholar

  17. Ringshausen, F. C. et al. Bronchiectasis-associated hospitalizations in Federal republic of germany, 2005–2011: a population-based written report of disease brunt and trends. PLOS ONE 8, e71109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar

  18. Sanchez-Munoz, Yard. et al. Time trends in hospital admissions for bronchiectasis: analysis of the Castilian National Hospital discharge data. PLOS ONE eleven, e0162282 (2016).

    PubMed  PubMed Central  Google Scholar

  19. Eastham, M. M., Autumn, A. J., Mitchell, Fifty. & Spencer, D. A. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax 59, 324–327 (2004).

    CAS  PubMed  PubMed Central  Google Scholar

  20. Karakoc, G. B., Yilmaz, M., Altintas, D. U. & Kendirli, S. G. Bronchiectasis: still a problem. Pediatr. Pulmonol. 32, 175–178 (2001).

    CAS  PubMed  Google Scholar

  21. Twiss, J., Metcalfe, R., Edwards, East. & Byrnes, C. New Zealand national incidence of bronchiectasis "too high" for a developed country. Curvation. Dis. Kid 90, 737–740 (2005).

    CAS  PubMed  PubMed Central  Google Scholar

  22. Chang, A. B., Grimwood, Thousand., Mulholland, Eastward. G. & Torzillo, P. J. Bronchiectasis in Indigenous children in remote Australian communities. Med. J. Aust. 177, 200–204 (2002).

    Google Scholar

  23. Singleton, R. et al. Bronchiectasis in Alaska native children: causes and clinical courses. Pediatr. Pulmonol. 29, 182–187 (2000).

    CAS  Google Scholar

  24. Chandrasekaran, R., Mac Aogain, K., Chalmers, J. D., Elborn, Southward. J. & Chotirmall, S. H. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm. Med. 18, 83 (2018).

    PubMed  PubMed Central  Google Scholar

  25. Weycker, D., Hansen, G. L. & Seifer, F. D. Prevalence and incidence of noncystic fibrosis bronchiectasis amid United states of america adults in 2013. Chron. Respir. Dis. xiv, 377–384 (2017).

    PubMed  PubMed Central  Google Scholar

  26. Lin, J.-L., Xu, J.-F. & Qu, J.-M. Bronchiectasis in China. Ann. Am. Thorac Soc. 13, 609–616 (2016).

    Google Scholar

  27. McDonnell, G. J. et al. Comorbidities and the take chances of mortality in patients with bronchiectasis: an international multicentre cohort study. Lancet Respir. Med. 4, 969–979 (2016).

    PubMed  PubMed Central  Google Scholar

  28. Diel, R. et al. Brunt of non-tuberculous mycobacterial pulmonary affliction in Deutschland. Eur. Respir. J. 49, 1602109 (2017).

    Google Scholar

  29. Koh, W.-J. et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur. Respir. J. l, 1602503 (2017).

    PubMed  Google Scholar

  30. Vidaillac, C., Yong, V. F. 50., Jaggi, T. K., Soh, M.-M. & Chotirmall, S. H. Gender differences in bronchiectasis: a real issue? Breathe (Sheff.) 14, 108–121 (2018).

    Google Scholar

  31. Vogelmeier, C. F. et al. Global strategy for the diagnosis, direction, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am. J. Respir. Crit. Care Med. 195, 557–582 (2017).

    CAS  PubMed  Google Scholar

  32. Tan, Westward. C. et al. Findings on thoracic computed tomography scans and respiratory outcomes in persons with and without chronic obstructive pulmonary disease: a population-based cohort written report. PLOS Ane 11, e0166745 (2016).

    PubMed  PubMed Primal  Google Scholar

  33. De Soyza, A. et al. Bronchiectasis rheumatoid overlap syndrome is an independent risk factor for mortality in patients with bronchiectasis: a multicenter accomplice study. Chest 151, 1247–1254 (2017).

    PubMed  Google Scholar

  34. Chalmers, J. D. et al. Characterization of the "frequent exacerbator phenotype" in bronchiectasis. Am. J. Respir. Crit. Intendance Med. 197, 1410–1420 (2018). A large (>ii,000 patients), multicentre study describing the clinical result of exacerbations over time, demonstrating that patients with frequent exacerbations have worse clinical outcomes even after adjustment for potential confounders.

    PubMed  Google Scholar

  35. Araujo, D. et al. The contained contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur. Respir. J. 51, 1701953 (2018).

    PubMed  Google Scholar

  36. Polverino, E. et al. European Respiratory Order guidelines for the management of adult bronchiectasis. Eur. Respir. J. l, 1700629 (2017). The first international guidelines following on from national guidance issued past thoracic societies in Spain, the United Kingdom, Commonwealth of australia and New Zealand.

    PubMed  Google Scholar

  37. Mao, B., Yang, J.-W., Lu, H.-Westward. & Xu, J.-F. Asthma and bronchiectasis exacerbation. Eur. Respir. J. 47, 1680–1686 (2016).

    CAS  PubMed  Google Scholar

  38. Shah, P. 50. et al. Determinants of chronic infection with Staphylococcus aureus in patients with bronchiectasis. Eur. Respir. J. 14, 1340–1344 (1999).

    CAS  PubMed  Google Scholar

  39. Whitehouse, J. L., Exley, A. R., Foweraker, J. & Bilton, D. Chronic Burkholderia multivorans bronchial infection in a non-cystic fibrosis individual with mannose binding lectin deficiency. Thorax 60, 168–170 (2005).

    CAS  PubMed  PubMed Central  Google Scholar

  40. Shoemark, A. et al. High prevalence of CCDC103 p. His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax 73, 157–166 (2018).

    PubMed  Google Scholar

  41. Chalmers, J. D. et al. The European Multicentre Bronchiectasis Inspect and Research Collaboration (EMBARC): experiences from a successful ERS Clinical Research Collaboration. Breathe (Sheff.) xiii, 180–192 (2017).

    Google Scholar

  42. Donnelly, D., Critchlow, A. & Everard, M. Fifty. Outcomes in children treated for persistent bacterial bronchitis. Thorax 62, fourscore–84 (2007).

    PubMed  Google Scholar

  43. Chalmers, J. D. & Chotirmall, South. H. Bronchiectasis: new therapies and new perspectives. Lancet Respir. Med. 6, 715–726 (2018).

    CAS  PubMed  Google Scholar

  44. Chalmers, J. D. et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 186, 657–665 (2012). A report demonstrating that bacterial clearance through antibody therapy results in reduced airway inflammation and in improvements in systemic inflammation, thereby providing stiff back up for the cocky-perpetuating bicycle hypothesis and the development of inhaled antibiotics every bit a treatment.

    CAS  PubMed  Google Scholar

  45. Finch, S., McDonnell, M. J., Abo-Leyah, H., Aliberti, S. & Chalmers, J. D. A. Comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in developed bronchiectasis. Ann. Am. Thorac Soc. 12, 1602–1611 (2015).

    PubMed  Google Scholar

  46. Wurzel, D. F. et al. Protracted bacterial bronchitis in children: natural history and take a chance factors for bronchiectasis. Chest 150, 1101–1108 (2016). A detailed description of a cohort of patients with persistent bacterial bronchitis that also identified risk factors for progression to bronchiectasis.

    PubMed  Google Scholar

  47. Kantar, A. et al. ERS statement on protracted bacterial bronchitis in children. Eur. Respir. J. 50, 1602139 (2017). A consensus statement from the ERS on the definition, diagnosis, microbiology, treatment and research priorities in persistent bacterial bronchitis.

    PubMed  Google Scholar

  48. Faner, R. et al. The microbiome in respiratory medicine: current challenges and future perspectives. Eur. Respir. J. 49, 1602086 (2017).

    PubMed  Google Scholar

  49. Taylor, South. L. et al. FUT2 genotype influences lung part, exacerbation frequency and airway microbiota in non-CF bronchiectasis. Thorax 72, 304–310 (2017).

    PubMed  Google Scholar

  50. Metersky, K. L. et al. The prevalence and significance of Staphylococcus aureus in patients with non-cystic fibrosis bronchiectasis. Ann. Am. Thorac Soc. fifteen, 365–370 (2018).

    PubMed  PubMed Central  Google Scholar

  51. Hilliam, Y. et al. Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. Eur. Respir. J. 49, 1602108 (2017).

    PubMed  PubMed Central  Google Scholar

  52. Woo, T. East. et al. Virulence adaptations of Pseudomonas aeruginosa isolated from patients with non-cystic fibrosis bronchiectasis. Microbiology 162, 2126–2135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar

  53. Rex, P. T. et al. Adaptive immunity to nontypeable Haemophilus influenzae. Am. J. Respir. Crit. Care Med. 167, 587–592 (2003).

    PubMed  Google Scholar

  54. Walker, W. T. et al. Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation. Eur. Respir. J. 50, 1700612 (2017).

    PubMed  Google Scholar

  55. Flume, P. A., Chalmers, J. D. & Olivier, K. Due north. Advances in bronchiectasis: endotyping, genetics, microbiome, and affliction heterogeneity. Lancet 392, 880–890 (2018).

    PubMed  PubMed Central  Google Scholar

  56. Taylor, Due south. L. et al. Matrix metalloproteinases vary with airway microbiota composition and lung role in non-cystic fibrosis bronchiectasis. Ann. Am. Thorac Soc. 12, 701–707 (2015).

    PubMed  Google Scholar

  57. Chintalacharuvu, K. R. et al. Cleavage of the human being immunoglobulin A1 (IgA1) hinge region past IgA1 proteases requires structures in the Fc region of IgA. Infect. Immun. 71, 2563–2570 (2003).

    CAS  PubMed  PubMed Primal  Google Scholar

  58. Wells, T. J. et al. Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J. Exp. Med. 211, 1893–1904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar

  59. van Ingen, J. et al. Treatment issue definitions in nontuberculous mycobacterial pulmonary affliction: an NTM-NET consensus statement. Eur. Respir. J. 51, 1800170 (2018).

    PubMed  PubMed Cardinal  Google Scholar

  60. Kunst, H., Wickremasinghe, Grand., Wells, A. & Wilson, R. Nontuberculous mycobacterial disease and Aspergillus-related lung illness in bronchiectasis. Eur. Respir. J. 28, 352–357 (2006).

    CAS  PubMed  Google Scholar

  61. Mac Aogain, Thousand. et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB written report. Eur. Respir. J. 52, 1800766 (2018).

    Google Scholar

  62. Gao, Y.-H. et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Breast 147, 1635–1643 (2015).

    PubMed  PubMed Central  Google Scholar

  63. Chalmers, J. D. & Hill, A. T. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol. Immunol. 55, 27–34 (2013).

    CAS  PubMed  Google Scholar

  64. Saleh, A. D., Kwok, B., Brown, J. South. & Hurst, J. R. Correlates and assessment of excess cardiovascular take a chance in bronchiectasis. Eur. Respir. J. 50, 1701127 (2017).

    PubMed  Google Scholar

  65. Frija-Masson, J. et al. Leaner-driven peribronchial lymphoid neogenesis in bronchiectasis and cystic fibrosis. Eur. Respir. J. 49, 1601873 (2017).

    PubMed  Google Scholar

  66. Ruchaud-Sparagano, M.-H. et al. Effect of granulocyte–macrophage colony-stimulating factor on neutrophil office in idiopathic bronchiectasis. Respirology 18, 1230–1235 (2013).

    PubMed  Google Scholar

  67. van de Ven, A. A. J. 1000. et al. A CT scan score for the assessment of lung disease in children with common variable immunodeficiency disorders. Chest 138, 371–379 (2010).

    PubMed  Google Scholar

  68. Frick, A. G. et al. Haemophilus influenzae stimulates ICAM-ane expression on respiratory epithelial cells. J. Immunol. 164, 4185–4196 (2000).

    CAS  PubMed  Google Scholar

  69. Angrill, J. et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am. J. Respir. Crit. Intendance Med. 164, 1628–1632 (2001).

    CAS  PubMed  Google Scholar

  70. Saleh, A. D. et al. The heterogeneity of systemic inflammation in bronchiectasis. Respir. Med. 127, 33–39 (2017).

    PubMed  Google Scholar

  71. van Kessel, D. A., van Velzen-Blad, H., van den Bosch, J. Thousand. M. & Rijkers, G. T. Impaired pneumococcal antibody response in bronchiectasis of unknown aetiology. Eur. Respir. J. 25, 482–489 (2005).

    PubMed  Google Scholar

  72. Zimmer, J., Sleiman, G., Poli, A., Michel, T. & Hentges, F. TAP deficiency is as well a cause of bronchiectasis. Thorax 68, 490–491 (2013).

    PubMed  Google Scholar

  73. Holmes, A. H., Pelton, S., Steinbach, S. & Luzzi, G. A. HIV related bronchiectasis. Thorax 50, 1227 (1995).

    CAS  PubMed  PubMed Key  Google Scholar

  74. Tsikrika, S. et al. The role of non-invasive modalities for assessing inflammation in patients with non-cystic fibrosis bronchiectasis. Cytokine 99, 281–286 (2017).

    CAS  PubMed  Google Scholar

  75. Watt, A. P. et al. Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis. Thorax 59, 231–236 (2004).

    CAS  PubMed  PubMed Cardinal  Google Scholar

  76. Chalmers, J. D. et al. Neutrophil elastase activeness is associated with exacerbations and lung office decline in bronchiectasis. Am. J. Respir. Crit. Care Med. 195, 1384–1393 (2017). A study demonstrating for the first fourth dimension that a biomarker could predict clinical outcomes in bronchiectasis, supporting a key role of neutrophil elastase in illness progression.

    CAS  PubMed  PubMed Key  Google Scholar

  77. Schleimer, R. P., Benenati, Due south. V., Friedman, B. & Bochner, B. S. Do cytokines play a role in leukocyte recruitment and activation in the lungs? Am. Rev. Respir. Dis. 143, 1166–1169 (1991).

    Google Scholar

  78. Mikami, Grand., Llewellyn-Jones, C. G., Bayley, D., Colina, S. L. & Stockley, R. A. The chemotactic activity of sputum from patients with bronchiectasis. Am. J. Respir. Crit. Intendance Med. 157, 723–728 (1998).

    CAS  PubMed  Google Scholar

  79. Schaaf, B., Wieghorst, A., Aries, South. P., Dalhoff, K. & Braun, J. Neutrophil inflammation and activation in bronchiectasis: comparing with pneumonia and idiopathic pulmonary fibrosis. Respiration 67, 52–59 (2000).

    CAS  PubMed  Google Scholar

  80. Fick, R. B. J. et al. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibiotic causing lacking opsonophagocytosis. J. Clin. Invest. 74, 236–248 (1984).

    PubMed  PubMed Central  Google Scholar

  81. Tosi, Chiliad. F., Zakem, H. & Berger, Chiliad. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well equally CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86, 300–308 (1990).

    CAS  PubMed  PubMed Cardinal  Google Scholar

  82. Berger, M., Sorensen, R. U., Tosi, M. F., Dearborn, D. G. & Doring, Grand. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J. Clin. Invest. 84, 1302–1313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar

  83. Voglis, S. et al. Homo neutrophil peptides and phagocytic deficiency in bronchiectatic lungs. Am. J. Respir. Crit. Care Med. 180, 159–166 (2009). The almost detailed study of neutrophil part and dysfunction in bronchiectasis to date, demonstrating that man neutrophil peptides (defensins) impair neutrophil phagocytosis and contribute to airway inflammation in bronchiectasis.

    CAS  PubMed  PubMed Central  Google Scholar

  84. Weldon, S. et al. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J. Immunol. 183, 8148–8156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar

  85. Amitani, R. et al. Effects of homo neutrophil elastase and Pseudomonas aeruginosa proteinases on homo respiratory epithelium. Am. J. Respir. Prison cell Mol. Biol. iv, 26–32 (1991).

    CAS  PubMed  Google Scholar

  86. Fischer, B. G. & Voynow, J. A. Neutrophil elastase induces MUC5AC factor expression in airway epithelium via a pathway involving reactive oxygen species. Am. J. Respir. Cell Mol. Biol. 26, 447–452 (2002).

    CAS  PubMed  Google Scholar

  87. Bedi, P. et al. The BRICS (Bronchiectasis Radiologically Indexed CT Score): a multicenter study score for use in idiopathic and postinfective bronchiectasis. Breast 153, 1177–1186 (2018).

    PubMed  Google Scholar

  88. Gaga, M. et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 53, 685–691 (1998).

    CAS  PubMed  PubMed Cardinal  Google Scholar

  89. Zheng, Fifty. et al. Macrophages, neutrophils and neoplasm necrosis factor-blastoff expression in bronchiectatic airways in vivo. Respir. Med. 95, 792–798 (2001).

    CAS  PubMed  Google Scholar

  90. Hodge, Due south. et al. Is alveolar macrophage phagocytic dysfunction in children with protracted bacterial bronchitis a forerunner to bronchiectasis? Chest 149, 508–515 (2016). A mechanistic study that increases our understanding of persistent bacterial bronchitis in children past demonstrating reductions in alveolar macrophage phagocytosis and efferocytosis (the clearance of apoptotic cells) in children with persistent bacterial bronchitis compared with salubrious controls, suggesting a defect that may contribute to persistent neutrophilic inflammation.

    PubMed  Google Scholar

  91. Vandivier, R. West. et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic jail cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Invest. 109, 661–670 (2002).

    CAS  PubMed  PubMed Central  Google Scholar

  92. Houtmeyers, Eastward., Gosselink, R., Gayan-Ramirez, Yard. & Decramer, Chiliad. Regulation of mucociliary clearance in health and disease. Eur. Respir. J. 13, 1177–1188 (1999).

    CAS  PubMed  Google Scholar

  93. Gilley, S. K. et al. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L162–L169 (2014).

    CAS  PubMed  Google Scholar

  94. Smallman, L. A., Hill, S. L. & Stockley, R. A. Reduction of ciliary beat out frequency in vitro by sputum from patients with bronchiectasis: a serine proteinase effect. Thorax 39, 663–667 (1984).

    CAS  PubMed  PubMed Central  Google Scholar

  95. Shoemark, A. et al. Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. Eur. Respir. J. 51, 1701809 (2018).

    PubMed  Google Scholar

  96. Falconer, 1000., Collins, D. R., Feeney, J. & Torreggiani, Westward. C. Mounier–Kuhn syndrome in an older patient. Age Ageing 37, 115–116 (2008).

    PubMed  Google Scholar

  97. Nishino, M. et al. Excessive collapsibility of bronchi in bronchiectasis: evaluation on volumetric expiratory high-resolution CT. J. Comput. Assist. Tomogr. 30, 474–478 (2006).

    PubMed  Google Scholar

  98. Lucas, J. S. et al. European Respiratory Society guidelines for the diagnosis of main ciliary dyskinesia. Eur. Respir. J. 49, 1601090 (2017).

    PubMed  PubMed Central  Google Scholar

  99. Goutaki, M. et al. The international primary ciliary dyskinesia cohort (iPCD cohort): methods and commencement results. Eur. Respir. J. 49, 1601181 (2017).

    PubMed  PubMed Key  Google Scholar

  100. Driscoll, J. A., Bhalla, S., Liapis, H., Ibricevic, A. & Brody, Due south. L. Autosomal dominant polycystic kidney affliction is associated with an increased prevalence of radiographic bronchiectasis. Chest 133, 1181–1188 (2008).

    PubMed  Google Scholar

  101. Fajac, I., Viel, Yard., Gaitch, N., Hubert, D. & Bienvenu, T. Combination of ENaC and CFTR mutations may predispose to cystic fibrosis-like disease. Eur. Respir. J. 34, 772–773 (2009).

    CAS  PubMed  Google Scholar

  102. Casals, T. et al. Bronchiectasis in adult patients: an expression of heterozygosity for CFTR gene mutations? Clin. Genet. 65, 490–495 (2004).

    CAS  PubMed  Google Scholar

  103. Bienvenu, T. et al. Cystic fibrosis transmembrane conductance regulator channel dysfunction in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 181, 1078–1084 (2010).

    CAS  PubMed  Google Scholar

  104. Horvath, I. et al. Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 53, 867–870 (1998).

    CAS  PubMed  PubMed Central  Google Scholar

  105. Loukides, S., Horvath, I., Wodehouse, T., Cole, P. J. & Barnes, P. J. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am. J. Respir. Crit. Intendance Med. 158, 991–994 (1998).

    CAS  PubMed  Google Scholar

  106. Willis, D., Moore, A. R., Frederick, R. & Willoughby, D. A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat. Med. 2, 87–90 (1996).

    CAS  PubMed  Google Scholar

  107. Chalmers, J. D., McHugh, B. J., Docherty, C., Govan, J. R. West. & Hill, A. T. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 68, 39–47 (2013).

    PubMed  Google Scholar

  108. Chang, A. B. et al. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand Thoracic Society of Australia and New Zealand guidelines. Med. J. Aust. 202, 21–23 (2015).

    PubMed  Google Scholar

  109. Dimakou, Yard. et al. Not CF-bronchiectasis: aetiologic approach, clinical, radiological, microbiological and functional profile in 277 patients. Respir. Med. 116, ane–7 (2016).

    PubMed  Google Scholar

  110. McCallum, G. B. & Binks, 1000. J. The epidemiology of chronic suppurative lung disease and bronchiectasis in children and adolescents. Front. Pediatr. 5, 27 (2017).

    PubMed  PubMed Central  Google Scholar

  111. Kapur, N., Masters, I. B. & Chang, A. B. Exacerbations in noncystic fibrosis bronchiectasis: clinical features and investigations. Respir. Med. 103, 1681–1687 (2009).

    Google Scholar

  112. Chang, A. B., Redding, G. J. & Everard, M. L. Chronic wet cough: protracted bronchitis, chronic suppurative lung illness and bronchiectasis. Pediatr. Pulmonol. 43, 519–531 (2008).

    CAS  Google Scholar

  113. Goyal, V., Grimwood, 1000., Marchant, J., Masters, I. B. & Chang, A. B. Does failed chronic wet cough response to antibiotics predict bronchiectasis? Arch. Dis. Child 99, 522–525 (2014).

    Google Scholar

  114. Suarez-Cuartin, G., Chalmers, J. D. & Sibila, O. Diagnostic challenges of bronchiectasis. Respir. Med. 116, lxx–77 (2016).

    Google Scholar

  115. van der Bruggen-Bogaarts, B. A., van der Bruggen, H. M., van Waes, P. F. & Lammers, J. Due west. Assessment of bronchiectasis: comparison of HRCT and spiral volumetric CT. J. Comput. Assist. Tomogr. 20, 15–xix (1996).

    Google Scholar

  116. Pasteur, K. C., Bilton, D. & Hill, A. T. British Thoracic Social club guideline for non-CF bronchiectasis. Thorax 65, 577 (2010).

    CAS  Google Scholar

  117. Matsuoka, S. et al. Bronchoarterial ratio and bronchial wall thickness on loftier-resolution CT in asymptomatic subjects: correlation with age and smoking. AJR Am. J. Roentgenol. 180, 513–518 (2003).

    Google Scholar

  118. Berend, Northward., Woolcock, A. J. & Marlin, G. Eastward. Human relationship betwixt bronchial and arterial diameters in normal human lungs. Thorax 34, 354–358 (1979).

    CAS  PubMed  PubMed Central  Google Scholar

  119. Diaz, A. A. et al. Bronchoarterial ratio in never-smokers adults: implications for bronchial dilation definition. Respirology 22, 108–113 (2017).

    Google Scholar

  120. Kapur, North., Masel, J. P., Watson, D., Masters, I. B. & Chang, A. B. Bronchoarterial ratio on high-resolution CT scan of the chest in children without pulmonary pathology: need to redefine bronchial dilatation. Chest 139, 1445–1450 (2011).

    PubMed  Google Scholar

  121. Chalmers, J. D. Bronchiectasis and COPD overlap: a case of mistaken identity? Chest 151, 1204–1206 (2017).

    Google Scholar

  122. Kim, S. J. et al. Normal bronchial and pulmonary arterial diameters measured by sparse section CT. J. Comput. Assistance. Tomogr. 19, 365–369 (1995).

    CAS  Google Scholar

  123. Brody, A. & Chang, A. The imaging definition of bronchiectasis in children: is information technology fourth dimension for a change? Pediatr. Pulmonol. 53, vi–vii (2018).

    PubMed  Google Scholar

  124. Hill, L. E., Ritchie, G., Wightman, A. J., Hill, A. T. & Murchison, J. T. Comparison between conventional interrupted high-resolution CT and volume multidetector CT acquisition in the assessment of bronchiectasis. Br. J. Radiol. 83, 67–70 (2010).

    CAS  PubMed  PubMed Central  Google Scholar

  125. Dodd, J. D., Souza, C. A. & Muller, Due north. L. Conventional loftier-resolution CT versus helical high-resolution MDCT in the detection of bronchiectasis. AJR Am. J. Roentgenol. 187, 414–420 (2006).

    Google Scholar

  126. Goyal, V., Grimwood, K., Marchant, J. Chiliad., Masters, I. B. & Chang, A. B. Paediatric chronic suppurative lung affliction: clinical characteristics and outcomes. Eur. J. Pediatr. 175, 1077–1084 (2016).

    Google Scholar

  127. Colom, A. J., Maffey, A., Garcia Bournissen, F. & Teper, A. Pulmonary part of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax seventy, 169–174 (2015).

    Google Scholar

  128. Pizzutto, S. J. et al. Bronchoscopy contributes to the clinical management of Indigenous children newly diagnosed with bronchiectasis. Pediatr. Pulmonol. 48, 67–73 (2013).

    Google Scholar

  129. Chang, A. B., Boyce, N. C., Masters, I. B., Torzillo, P. J. & Masel, J. P. Bronchoscopic findings in children with non-cystic fibrosis chronic suppurative lung disease. Thorax 57, 935–938 (2002).

    CAS  PubMed  PubMed Central  Google Scholar

  130. Douros, Chiliad. et al. Bronchoscopic and loftier-resolution CT scan findings in children with chronic moisture cough. Chest 140, 317–323 (2011).

    Google Scholar

  131. Martinez-Garcia, M. A. et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur. Respir. J. 43, 1357–1367 (2014).

    PubMed  Google Scholar

  132. Ellis, H. C., Cowman, Southward., Fernandes, Chiliad., Wilson, R. & Loebinger, M. R. Predicting mortality in bronchiectasis using bronchiectasis severity index and FACED scores: a nineteen-year cohort written report. Eur. Respir. J. 47, 482–489 (2016).

    PubMed  Google Scholar

  133. Mao, B., Yang, J.-Westward., Lu, H.-W. & Xu, J.-F. Asthma and risk of bronchiectasis exacerbation: nosotros still need more than evidence. Eur. Respir. J. 48, 1247–1248 (2016).

    PubMed  Google Scholar

  134. Araujo, D. et al. Standardised classification of the aetiology of bronchiectasis using an objective algorithm. Eur. Respir. J. 50, 1701289 (2017).

    PubMed  Google Scholar

  135. Gaillard, Eastward. A., Carty, H., Heaf, D. & Smyth, R. L. Reversible bronchial dilatation in children: comparison of serial high-resolution computer tomography scans of the lungs. Eur. J. Radiol. 47, 215–220 (2003).

    CAS  PubMed  Google Scholar

  136. McCallum, G. B. & Chang, A. B. "Good plenty" is "not enough" when managing indigenous adults with bronchiectasis in Australia and New Zealand. Respirology 23, 725–726 (2018).

    PubMed  Google Scholar

  137. Aliberti, S. et al. Quality standards for the direction of bronchiectasis in Italy: a national inspect. Eur. Respir. J. 48, 244–248 (2016).

    CAS  PubMed  Google Scholar

  138. Kwak, H. J. et al. High prevalence of bronchiectasis in adults: assay of CT findings in a wellness screening program. Tohoku J. Exp. Med. 222, 237–242 (2010).

    PubMed  Google Scholar

  139. Flude, 50. J., Agent, P. & Bilton, D. Chest physiotherapy techniques in bronchiectasis. Clin. Chest Med. 33, 351–361 (2012).

    PubMed  Google Scholar

  140. Munoz, G., de Gracia, J., Buxo, M., Alvarez, A. & Vendrell, 1000. Long-term benefits of airway clearance in bronchiectasis: a randomised placebo-controlled trial. Eur. Respir. J. 51, 1701926 (2018).

    PubMed  Google Scholar

  141. Wong, C., Sullivan, C. & Jayaram, L. ELTGOL airway clearance in bronchiectasis: laying the bricks of bear witness. Eur. Respir. J. 51, 1702232 (2018).

    PubMed  Google Scholar

  142. Lee, A. L., Burge, A. T. & Holland, A. East. Airway clearance techniques for bronchiectasis. Cochrane Database Syst. Rev. 11, CD008351 (2015).

    Google Scholar

  143. Nicolson, C. H. H. et al. The long term outcome of inhaled hypertonic saline half dozen% in non-cystic fibrosis bronchiectasis. Respir. Med. 106, 661–667 (2012).

    Google Scholar

  144. Lee, A. L., Hill, C. J., McDonald, C. F. & Kingdom of the netherlands, A. E. Pulmonary rehabilitation in individuals with not-cystic fibrosis bronchiectasis: a systematic review. Arch. Phys. Med. Rehabil. 98, 774–782 (2017).

    Google Scholar

  145. Kuehni, C. Due east., Goutaki, M. & Kobbernagel, H. E. Hypertonic saline in patients with primary ciliary dyskinesia: on the road to evidence-based handling for a rare lung disease. Eur. Respir. J. 49, 1602514 (2017).

    Google Scholar

  146. Bilton, D. et al. Inhaled mannitol for not-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax 69, 1073–1079 (2014).

    Google Scholar

  147. Guan, W.-J., Huang, Y., Chen, C.-L., Chen, R.-C. & Zhong, N.-S. Macrolides, mucoactive drugs and adherence for the management of bronchiectasis. Eur. Respir. J. 51, 1701987 (2018).

    Google Scholar

  148. Chalmers, J. D. & Polverino, E. Macrolides, mucoactive drugs and adherence for the direction of bronchiectasis. Eur. Respir. J. 51, 1702033 (2018).

    Google Scholar

  149. O'Donnell, A. East., Barker, A. F., Ilowite, J. Due south. & Fick, R. B. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 113, 1329–1334 (1998). 1 of the first large-scale trials in bronchiectasis in the modern era, showing that a drug known to be beneficial in cystic fibrosis bronchiectasis was ineffective or potentially harmful in non-cystic fibrosis bronchiectasis; the noesis that cystic fibrosis and bronchiectasis behave differently has fabricated a major touch on on the field.

    Google Scholar

  150. Wills, P. J. et al. Short-term recombinant human DNase in bronchiectasis. Result on clinical state and in vitro sputum transportability. Am. J. Respir. Crit. Care Med. 154, 413–417 (1996).

    CAS  Google Scholar

  151. Mustafa, M.-H. et al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur. Respir. J. 49, 1601847 (2017).

    PubMed  Google Scholar

  152. Kelly, C. et al. Macrolide antibiotics for bronchiectasis. Cochrane Database Syst. Rev. three, CD012406 (2018).

    Google Scholar

  153. Serisier, D. J. et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations amidst patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 309, 1260–1267 (2013).

    CAS  PubMed  Google Scholar

  154. Wong, C. et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (Cover): a randomised, double-bullheaded, placebo-controlled trial. Lancet 380, 660–667 (2012). The first-published of three important macrolide studies conducted in adults, demonstrating consistent reductions in exacerbation frequency with long-term low-dose macrolide versus placebo.

    CAS  PubMed  Google Scholar

  155. Altenburg, J. et al. Result of azithromycin maintenance handling on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309, 1251–1259 (2013).

    CAS  PubMed  Google Scholar

  156. Valery, P. C. et al. Long-term azithromycin for Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir. Med. 1, 610–620 (2013). A multicentre randomized controlled trial demonstrating reduced exacerbations in Indigenous children treated with azithromycin compared with placebo.

    CAS  PubMed  Google Scholar

  157. van Ingen, J. et al. Poor adherence to management guidelines in nontuberculous mycobacterial pulmonary diseases. Eur. Respir. J. 49, 1601855 (2017).

    PubMed  Google Scholar

  158. Haworth, C. S., Foweraker, J. East., Wilkinson, P., Kenyon, R. F. & Bilton, D. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Intendance Med. 189, 975–982 (2014).

    PubMed  PubMed Key  Google Scholar

  159. Barker, A. F. et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): 2 randomised double-bullheaded, placebo-controlled phase iii trials. Lancet Respir. Med. 2, 738–749 (2014). At the time, the largest inhaled antibiotic trial in bronchiectasis; this study institute that aztreonam, which is licensed for use in cystic fibrosis, did non improve QOL in bronchiectasis and was associated with increased adverse events.

    CAS  Google Scholar

  160. De Soyza, A. et al. RESPIRE ane: a phase Iii placebo-controlled randomised trial of ciprofloxacin dry out pulverisation for inhalation in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 51, 1702052 (2018). One of two studies describing the largest inhaled antibody development programme in bronchiectasis; this report found no consistent improvements in exacerbation frequency or QOL with inhaled antibiotics, questioning their function as a therapy for patients with bronchiectasis.

    PubMed  Google Scholar

  161. Aksamit, T. et al. RESPIRE ii: a phase 3 placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in not-cystic fibrosis bronchiectasis. Eur. Respir. J. 51, 1702053 (2018).

    PubMed  Google Scholar

  162. Chotirmall, S. H. & Chalmers, J. D. RESPIRE: animate new life into bronchiectasis. Eur. Respir. J. 51, 1702444 (2018).

    PubMed  Google Scholar

  163. Barker, A. F. et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am. J. Respir. Crit. Intendance Med. 162, 481–485 (2000).

    CAS  PubMed  Google Scholar

  164. Drobnic, Thou. E., Suñé, P., Montoro, J. B., Ferrer, A. & Orriols, R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann. Pharmacother. 39, 39–44 (2005).

    CAS  PubMed  Google Scholar

  165. Vendrell, M., Muñoz, G. & de Gracia, J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir. Med. J. 9, 30–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar

  166. Brodt, A. M., Stovold, East. & Zhang, Fifty. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 44, 382–393 (2014).

    PubMed  Google Scholar

  167. Murray, M. P. et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 183, 491–499 (2011).

    CAS  PubMed  Google Scholar

  168. Haworth, C. et al. Inhaled liposomal ciprofloxacin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection: results from 2 parallel phase Iii trials (ORBIT-3 and -4) [abstract]. Am. J. Respir. Crit. Care Med. 195, A7604 (2018).

    Google Scholar

  169. Contoli, Thousand. et al. Long-term furnishings of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur. Respir. J. fifty, 1700451 (2017).

    PubMed  Google Scholar

  170. Kapur, North., Petsky, H. Fifty., Bong, S., Kolbe, J. & Chang, A. B. Inhaled corticosteroids for bronchiectasis. Cochrane Database Syst. Rev. v, CD000996 (2018).

    PubMed  Google Scholar

  171. De Soyza, A. et al. A randomised, placebo-controlled written report of the CXCR2 adversary AZD5069 in bronchiectasis. Eur. Respir. J. 46, 1021–1032 (2015).

    PubMed  Google Scholar

  172. Stockley, R. et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir. Med. 107, 524–533 (2013).

    PubMed  Google Scholar

  173. Bedi, P. et al. A randomized controlled trial of atorvastatin in patients with bronchiectasis infected with Pseudomonas aeruginosa: a proof of concept study. Chest 152, 368–378 (2017).

    PubMed  Google Scholar

  174. Mandal, P. et al. Atorvastatin as a stable treatment in bronchiectasis: a randomised controlled trial. Lancet Respir. Med. ii, 455–463 (2014).

    CAS  PubMed  Google Scholar

  175. Konstan, G. W. et al. A randomized double blind, placebo controlled phase ii trial of BIIL 284 BS (an LTB4 receptor adversary) for the treatment of lung illness in children and adults with cystic fibrosis. J. Cyst. Fibros xiii, 148–155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar

  176. Fan, 50.-C., Liang, S., Lu, H.-W., Fei, Thousand. & Xu, J.-F. Efficiency and safety of surgical intervention to patients with non-cystic fibrosis bronchiectasis: a meta-analysis. Sci. Rep. 5, 17382 (2015).

    CAS  PubMed  PubMed Central  Google Scholar

  177. Birch, J. et al. Outcomes of lung transplantation in adults with bronchiectasis. BMC Pulm. Med. 18, 82 (2018).

    PubMed  PubMed Central  Google Scholar

  178. Loma, A. T. et al. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur. Respir. J. 49, 1700051 (2017). A global consensus document on the definition of exacerbation for utilise in clinical research; this paper is notable for the involvement of investigators from Europe, North America, Australasia and Africa in a global task strength.

    PubMed  Google Scholar

  179. O'Leary, C. J. et al. Relationship between psychological well-being and lung wellness status in patients with bronchiectasis. Respir. Med. 96, 686–692 (2002).

    PubMed  Google Scholar

  180. Ryu, Y. J., Chun, E.-Thousand., Lee, J. H. & Chang, J. H. Prevalence of depression and feet in outpatients with chronic airway lung affliction. Korean J. Intern. Med. 25, 51–57 (2010).

    PubMed  PubMed Central  Google Scholar

  181. Joish, V. North., Spilsbury-Cantalupo, M., Operschall, Eastward., Luong, B. & Boklage, S. Economic burden of non-cystic fibrosis bronchiectasis in the first yr subsequently diagnosis from a United states of america health program perspective. Appl. Wellness Econ. Health Policy 11, 299–304 (2013).

    Google Scholar

  182. Kapur, N., Masters, I. B., Newcombe, P. & Chang, A. B. The burden of illness in pediatric not-cystic fibrosis bronchiectasis. Breast 141, 1018–1024 (2012).

    PubMed  Google Scholar

  183. Murray, M. P., Turnbull, Thousand., MacQuarrie, S., Pentland, J. Fifty. & Hill, A. T. Validation of the Leicester cough questionnaire in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 34, 125–131 (2009).

    CAS  PubMed  Google Scholar

  184. Guan, W.-J. et al. Inflammatory responses, spirometry, and quality of life in subjects with bronchiectasis exacerbations. Respir. Care 60, 1180–1189 (2015).

    PubMed  Google Scholar

  185. Courtney, J. 1000. et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron. Respir. Dis. v, 161–168 (2008).

    CAS  PubMed  Google Scholar

  186. Coulter, T. I. et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J. Allergy Clin. Immunol. 139, 597–606 (2017).

    CAS  PubMed  PubMed Primal  Google Scholar

  187. Goeminne, C. P. et al. The bear on of acute air pollution fluctuations on bronchiectasis pulmonary exacerbation. A case-crossover assay. Eur. Respir. J. 52, 1702557 (2018).

    PubMed  Google Scholar

  188. Chalmers, J. D. et al. Cantankerous-infection run a risk in patients with bronchiectasis: a position argument from the European Bronchiectasis Network (EMBARC), EMBARC/ELF patient advisory grouping and European Reference Network (ERN-Lung) Bronchiectasis Network. Eur. Respir. J. 51, 1701937 (2018).

    PubMed  Google Scholar

  189. Blasi, F., Chalmers, J. D. & Aliberti, Due south. COPD and bronchiectasis: phenotype, endotype or co-morbidity? COPD 11, 603–604 (2014).

    PubMed  Google Scholar

  190. Aliberti, S. et al. Clinical phenotypes in adult patients with bronchiectasis. Eur. Respir. J. 47, 1113–1122 (2016).

    PubMed  Google Scholar

  191. Pasteur, Thou. C. et al. An investigation into causative factors in patients with bronchiectasis. Am. J. Respir. Crit. Care Med. 162, 1277–1284 (2000).

    CAS  PubMed  Google Scholar

  192. Agustí, A. et al. Precision medicine in airway diseases: moving to clinical do. Eur. Respir. J. 50, 1701655 (2017).

    PubMed  Google Scholar

  193. Agusti, A. et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur. Respir. J. 47, 410–419 (2016).

    PubMed  Google Scholar

  194. Vedel-Krogh, S., Nordestgaard, B. M., Lange, P., Vestbo, J. & Nielsen, Southward. F. Blood eosinophil count and risk of pneumonia hospitalisations in individuals with COPD. Eur. Respir. J. 51, 1800120 (2018).

    PubMed  Google Scholar

  195. Kerkhof, One thousand. et al. Blood eosinophil count and exacerbation risk in patients with COPD. Eur. Respir. J. 50, 1700761 (2017).

    PubMed  Google Scholar

  196. Southworth, T., Beech, Grand., Foden, P., Kolsum, U. & Singh, D. The reproducibility of COPD blood eosinophil counts. Eur. Respir. J. 52, 1800427 (2018).

    PubMed  Google Scholar

  197. Palmer, R. et al. Dipeptidyl peptidase i inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activeness in healthy subjects. Clin. Pharmacol. Ther. https://doi.org/ten.1002/cpt.1053 (2018).

    Google Scholar

  198. Harding, R. & Maritz, G. Maternal and fetal origins of lung disease in machismo. Semin. Fetal Neonatal Med. 17, 67–72 (2012).

    PubMed  Google Scholar

  199. Maritz, Thou. South. & Harding, R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon later birth: show for altered lung evolution. Int. J. Environ. Res. Public Health viii, 875–898 (2011).

    CAS  PubMed  PubMed Fundamental  Google Scholar

  200. Caskey, Southward. et al. Structural and functional lung harm in adult survivors of bronchopulmonary dysplasia. Ann. Am. Thorac Soc. thirteen, 1262–1270 (2016).

    PubMed  Google Scholar

  201. Valery, P. C. et al. Hospital-based case–command study of bronchiectasis in Indigenous children in fundamental Australia. Pediatr. Infect. Dis. J. 23, 902–908 (2004).

    PubMed  Google Scholar

  202. Jayes, L. et al. SmokeHaz: systematic reviews and meta-analyses of the effects of smoking on respiratory health. Chest 150, 164–179 (2016).

    PubMed  Google Scholar

  203. Walker, C. L. F. et al. Global brunt of childhood pneumonia and diarrhoea. Lancet 381, 1405–1416 (2013).

    PubMed  PubMed Primal  Google Scholar

  204. Chang, A. B. et al. Protracted bacterial bronchitis: the last decade and the road ahead. Pediatr. Pulmonol. 51, 225–242 (2016).

    PubMed  Google Scholar

  205. Sjogren, P., Nilsson, E., Forsell, M., Johansson, O. & Hoogstraate, J. A systematic review of the preventive event of oral hygiene on pneumonia and respiratory tract infection in elderly people in hospitals and nursing homes: effect estimates and methodological quality of randomized controlled trials. J. Am. Geriatr. Soc. 56, 2124–2130 (2008).

    PubMed  Google Scholar

  206. Singleton, R. J. et al. Ethnic children from three countries with non-cystic fibrosis chronic suppurative lung affliction/bronchiectasis. Pediatr. Pulmonol. 49, 189–200 (2014).

    PubMed  Google Scholar

  207. Tan, H.-L. et al. The Th17 pathway in cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 184, 252–258 (2011).

    CAS  PubMed  PubMed Fundamental  Google Scholar

  208. Picard, C. et al. Primary immunodeficiency diseases: an update on the classification from the International Spousal relationship of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J. Clin. Immunol. 35, 696–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar

  209. Zemanick, Eastward. T. et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur. Respir. J. 50, 1700832 (2017).

    PubMed  PubMed Central  Google Scholar

  210. Paff, T. et al. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in principal ciliary dyskinesia. Eur. Respir. J. 49, 1601770 (2017).

    Google Scholar

  211. Gupta, S. et al. Qualitative analysis of high-resolution CT scans in astringent asthma. Chest 136, 1521–1528 (2009).

    PubMed  PubMed Primal  Google Scholar

  212. Agarwal, R. et al. A randomised trial of glucocorticoids in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. Eur. Respir. J. 47, 490–498 (2016).

    CAS  Google Scholar

  213. McShane, P. J., Naureckas, E. T. & Strek, M. Due east. Bronchiectasis in a diverse US population: effects of ethnicity on etiology and sputum civilisation. Breast 142, 159–167 (2012). A detailed clarification of a US-based cohort that reveals differences in aetiology and microbiology based on ethnicity, a finding that has become increasingly important as more global information on bronchiectasis get bachelor.

    Google Scholar

Download references

Acknowledgements

J.D.C. is supported by the GSK/British Lung Foundation Chair of Respiratory Inquiry. A.B.C. is supported by an Australian National Health and Medical Research Quango Practitioner Fellowship (grant 105821). S.H.C. is supported by the Singapore Ministry building of Health's National Medical Enquiry Quango nether its Transition Award (NMRC/TA/0048/2016), the Lee Kong Chian School of Medicine, Nanyang Technological Academy Start-Upward Grant and would like to admit the Academic Respiratory Initiative for Pulmonary Health (TARIPH).

Reviewer data

Nature Reviews Disease Primers give thanks L.-A. Daniel, K. Olivier, E. Polverino, H. Tiddens and the other bearding reviewer(southward) for their contribution to the peer review of this work.

Writer information

Affiliations

Contributions

Introduction (J.D.C.); Epidemiology (P.J.Grand.); Mechanisms/pathophysiology (S.H.C.); Diagnosis, screening and prevention (A.B.C.); Management (R.D.); Quality of life (P.J.Chiliad.); Outlook (J.D.C.); Overview of Primer (J.D.C.).

Respective author

Correspondence to James D. Chalmers.

Ethics declarations

Competing interests

J.D.C. has been an investigator, advisory board member or trial steering committee member for several bronchiectasis clinical trials, including for Aradigm, Bayer, Grifols, Novartis and Zambon. He is chair of the European Bronchiectasis Registry. A.B.C. is a member of the information condom monitoring board for an unlicensed vaccine report (for GlaxoSmithKline) and an adviser for study blueprint of an unlicensed product for cough (for Merck). She declares no financial conflicts of interest regarding the content of this manuscript. P.J.G. has served on the advisory committee to the FDA for Bayer and is an advisory lath fellow member for Aradigm, Bayer, Grifols, Hill Rom and Insmed. She declares no financial conflicts of interest regarding the content of this manuscript. S.H.C. and R.D. declare no competing interests.

Boosted information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC): www.bronchiectasis.eu

Virtually this article

Verify currency and authenticity via CrossMark

Cite this commodity

Chalmers, J.D., Chang, A.B., Chotirmall, Due south.H. et al. Bronchiectasis. Nat Rev Dis Primers four, 45 (2018). https://doi.org/ten.1038/s41572-018-0042-3

Download citation

  • Published:

  • DOI : https://doi.org/10.1038/s41572-018-0042-iii

Further reading

johnsonsathect87.blogspot.com

Source: https://www.nature.com/articles/s41572-018-0042-3

0 Response to "Review of Suggested Medication for Bronchiectasis Symbicort 160/45"

ارسال یک نظر

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel